
Particle-filter based language models

December 13, 2017

Rachit Singh, Yuntian Deng
rachitsingh@college.harvard.edu

There’s significant interest in finding generative models of text using latent variable mod-
els, since latent variables often let us control generation by making small steps in the latent
space. One of the simplest problems to solve in this way is language modeling, the problem
of computing a probability distribution p(x1, . . . , xT) over sentences x = {x1, . . . , xT}. The
state of the art in language modeling is RNN-based language models (RNN-LMs), which do
not incorporate explicit inference over latent variables.

Instead, we build on the theory of state-space models and recent work on generative
models to build a latent variable language model for text, which we train using variational
inference. Explicitly, we look at the case of generative model with sequential latent variables,
or a sequence {z1, . . . , zT} of latent variables corresponding to a sentence {x1, . . . , xT}. We
give more details on our explicit assumptions below in Section 2.

1 Prior work

There are two branches of prior work that we consider. First, the state of the art (SOTA) in
language modeling are RNN-LMs, where the probability distribution factors over each word
conditional on the past, and we compute the conditional probabilities using an RNN. The
main techniques used to achieve SOTA are:

• Regularization methods to prevent overfitting: Merity et al. (2017) explores a
set of regularization methods, including DropConnect (dropout inside the RNN cell),
variational dropout (sampling the dropout once per RNN rollout), embedded dropout,
and weight tying.

• Improved optimization methods Merity et al. (2017) mentions BPTT jitter (ran-
domizing the BPTT window) and averaged SGD (ASGD) as techniques that improve
performance.

• Removing softmax limitations Recently, Yang et al. (2017) explores the the restric-
tion that using a softmax to generate probabilities for a language model. Essentially,
they show that the probability distributions representable by a softmax is restricted to
rank-d matrices, where d is the embedding size 1. They overcome this limitation using
a mixture-of-softmaxes, while retaining roughly the same number of parameters.

1They show that if the true probability distribution over a sequence of contexts (e.g., a sentence) is
representated by a matrix A, then the distribution can be represented only if there’s a factorization into two
matrices HθW

T
θ that is off from A only by a per-row shift (i.e. the bias).

1

mailto:rachitsingh@college.harvard.edu

This is excellent experimental work that helps bring language model training in line with
the kinds of methods that have made image tasks tractable, like batch normalization 2. The
underlying generative model is essentially still the same as that of (cite: Mikolov), i.e. an
RNN-LM. We intend to use these methods to bring our model to state of the art.

The other branch of prior work is work on sequential generative models, which assume
a particular generative process and approximate the posterior using variational inference
(VI). There are many attempts in the literature to introduce sequential latent variables
in the generative process. Bowman et al. (2015); Zhang et al. (2016); Li et al. (2017)
studied applying VI to generative models over text, and use the hidden state after encoding
as the latent variable. More recently, (Bayer and Osendorfer, 2014; Gregor et al., 2015;
Chung et al., 2015; Fraccaro et al., 2016). As a whole, these works find two problems with
applying these models to text: (1) at the beginning of training, the KL divergence loss is
too strong, causing the model to make the variational approx. q to converge to the prior
p, and become an RNN-LM (Bowman et al., 2015), and (2) Yang et al. (2017) makes the
claim that for discrete data “the variational lower bound is usually too loose to yield a
competitive approximation compared to standard auto-regressive models”. (1) is usually
solved by annealing the KL portion of the loss from 0 to 1, essentially removing noise early
in training. For (2), Maddison et al. (2017); Naesseth et al. (2017); Le et al. (2017) examine
the issue of the looseness of the variational lower bound in sequential models, and show
that the issue is that errors made in the inference process are propagated forwards without
correction, making it unlikely that the full sampled sequence {z1, . . . , zT} has high posterior
probability. They develop a particle-filter based variational inference, which has significant
improvement over variational RNNs trained using the ELBO or IWAE as objectives. There
is a more detailed overview in Section 4.

A high level overview of our proposal is to build a language model for text that follows
the RNN with sequential latent state paradigm, and fit it using variational inference. We’ll
use the solutions above, which are (1) anneal KL to encourage use of the latent states, and
(2) use the particle-filter method to optimize a tighter lower bound than IWAE or ELBO.
Given the wealth of recent knowledge about training RNN-LMs, we’ll experiment with those
regularization techniques to see if they lead to improved performance. One recent work
(Zheng et al., 2017) proposes a very similar method which does not outperform an LSTM
baseline. However, their work does not condition the distribution of the word xt on past
generations, which is well known to be important to language modeling.

2 Model

First, for a particular sentence of length T , we have a sequence of tokens {x1, . . . , xT}. We
assume that there is a sequence of latent variables {z1, . . . , zT}, and that the joint distribution
factors as:

p(x1, . . . , xT , z1, . . . , zT) =
T∏
t=1

p(zt|z<t)p(xt|zt, z<t, x<t)

2There’s work (Cooijmans et al., 2016) that extends batch normalization to the recurrent setting, but I
had trouble getting it to work on NMT tasks.

2

s0 s1 s2 s3 . . .

z1 z2 z3 . . .

r0 r1 r2 r3 . . .

x1 x2 x3 . . .

Figure 1: The proposed generative process. Straight lines indicate deterministic functions,
while squiggly arrows indicate parametrizing sampled variables, which are circled.

This relaxes the assumptions of state-space and state-space LSTM models by allowing a more
complicated transition model and generation model. Specifically, we allow the distribution
for the current word xt to depend on previously generated words (and so, generalize an
RNN-LM), and also allow the distribution over current state to depend on previous states.
So, we can compute the probabilities p(zt|z<t) and p(xt|zt, z<t, x<t) using RNNs as follows:

Generation

First, initialize s0, r0 from a trainable variable. Then, for each time step t ∈ {1, . . . , T}:

1. Perform an RNN transition st = RNNs(st−1, zt), rt = RNNr(rt−1, xt−1, zt).

2. We sample zt ∼ N (st, I), xt ∼ Cat(r>t θ). In other words, we let p(zt|z<t) = N (zt; st, I)
and p(xt|zt, z<t, x<t) = Cat(xt; r

>
t θ)

Note that the internal variables of RNNs actually encode the prior distribution p(z1, . . . , zT)
of the latent states. We use spherical normal distributions here to simplify the model de-
scription. It’s possible that we might want to use st, rt to parametrize the mean and the
variances together, but this takes very little modification. The input to RNNr is the previ-
ous hidden state, and also xt−1, zt, which we concatenate as appropriate. The distribution
for xt, a categorical, is over the vocabulary; θ refers to the embedding parameters, so the
categorical distribution’s entries are determined via a softmax as

3

x1 x2 x3 . . .

b1 b2 b3 . . .

h0 h1 h2 h3 . . .

z1 z2 z3 . . .

Figure 2: The proposed inference network. The same convention from above is used: straight
lines indicate deterministic functions, squiggly arrows indicate parametrization for sampled
variables. The two-way arrows for the bi indicates that they’re hidden states from a bidi-
rectional RNN.

3 Inference

For inference, we use a variational network. We assume that our approximate posterior
distribution q(z1, . . . , zT) ≈ p(z1, . . . zT |x1, . . . , xT) factors as follows:

q(z1, . . . , zT) =
T∏
t=1

q(zt|z<t)

Then, we can compute the probability distribution q(zt|z<t) as follows:

Inference

1. Run a bidirectional RNN over the words x1, . . . , xT , and let their corresponding hidden
states be b1, . . . , bT

2. Let h0 be a trainable vector. For each time step t ∈ {1, . . . , T}:

(a) Perform an RNN transition: ht = RNNh(ht−1, bt)

(b) Sample a new zt ∼ N (ht, I). In other words, q(zt|z<t) = N (zt;ht, I)

One unfortunate side effect of using a particle filter for tightening the lower bound is that
we must sample forwards, so we sample z1 before z2, etc. However, it’s often beneficial to do
inference in reverse, as explained by Sønderby et al. (2016) in ladder variational autoencoders
(LVAE) and Krishnan et al. (2017). Maddison et al. (2017) discuss this using the term
‘sharpness’ and show that this effect doesn’t change the fact that the particle filter is better

4

- even if we include ‘smoothing’ terms for a regular ELBO or IWAE training, it still performs
worse.

While we have a somewhat clearer sense of what the generative model should look like,
we have a lot of choice over what our hidden variables are. For example, we can assume that
they they’re Gaussian, or possible a discrete random variable.

We also have significant choice over the prior in these case. Since we want the prior to
be over the entire vector z, we can factor the prior over time as well.

Preliminary optimization

As a first step, we can optimize either (1) the regular ELBO under a regular sampling
procedure, and (2) the normal IWAE across time steps. Here we’ll give a description of (1),
the other case is similar:

ELBO optimization

1. Sample a set of variables {z1, . . . , zT} as described in the “Inference”.

2. Compute the negative ELBO:

LELBO = −Ez

 T∑
t=1

log p(xt|zt, z<t, x<t)︸ ︷︷ ︸
RNNr

+ log p(zt|z<t)︸ ︷︷ ︸
RNNs

− log q(zit|z<t)︸ ︷︷ ︸
RNNh

3. Compute the gradient of the ELBO, via reparametrization gradients for q, and perform

an update

One thing to note is that we will almost definitely need to anneal the KL as in Bowman
et al. (2015). This corresponds to the second and third terms. In the IWAE case, we’ll just
compute this quantity over K samples, and take the logsumexp of the values and add logK.

4 Particle Filter

Recent work (Naesseth et al. (2017); Maddison et al. (2017); Le et al. (2017)) has shown how
to find a significantly tigher variational bound in the case of sequential latent distributions
(see Fig. 4). Essentially, by treating the sequence of samples (i.e. collection of samples
for z1, another as z2, etc.) as the progressive states of a particle filter, we can do better
than the naive approach of sampling k separate chains, by using a resample/reweight step
to remove low weight sequences and resample high weight sequences. In effect, this is a
form of probabilistic, differentiable beam search - we can essentially optimize the proposal
distribution p(zt|z1:t−1,y), but only if the corresponding predictions are good.

Formally, the algorithm to compute the marginal likelihood estimate is found in Section 4.

5

for t ∈ {1, . . . , T} do
if t = 1 then

For each i ≤ K, sample zi1 ∼ q(z1) (i.e., using h1).
else

if <resample this step>3 then
Resample ait ∼ Cat(wj

t−1/
∑
wt−1)

else
Let ait = i

end if
for 1 ≤ i ≤ K do

Sample zit ∼ q(zt|z
ait
<t)

Define z<t+1 := (zit; z
ait
<t)

Compute weights wi
t = wi

t−1 · p(xt|zit, z
ait
<t, x<t)p(z

i
t|z

ait
<t)/q(z

i
t|z

ait
<t)

end for
Renormalize wi

t ← wi
t/
∑

iw
i
t

end if
end for
return p̂(x) ,

∏T
t=1

1
K

∑K
i=1w

i
t

The algorithm returns p̂(x), an unbiased estimate of p(x):

E[p̂(x)] = E

[
T∏
t=1

1

K

K∑
i=1

wi
t

]
= p(x)

We can use this estimate to produce the surrogate ELBO (which is still a lower bound)
for optimization:

L̃ , Ez1:K ,a1:K

[
T∑
t=1

log

(
1

K

K∑
i=1

wi
t

)]
In Naesseth et al. (2017), this expectation is denoted as over the distribution φ(z1:K , a1:K),
which is the distribution over sampled z particles and the ancestor variables a. This factors
as:

φ(z1:K , a1:K) =

(
K∏
i=1

T∏
t=2

w
ait
t−1∑

l w
l
t−1

)
︸ ︷︷ ︸

ancestor choices

(
K∏
i=1

q(zi1)
T∏
t=2

q(zit|z
ait
<t)

)
︸ ︷︷ ︸

posterior samples

4.0.1 Training

One of the main contributions of the recent work is a method for computing gradients, so
we cover that as well. Note that there are 3 RNNs in our model as stated:

1. RNNs which parametrizes the prior distribution over z

2. RNNr, which parametrizes the likelihood of x

6

z21

z31

z11

z32

z22

z12

z33

z23

z13

log p̂1 log p̂2 log p̂3

resample {zi1:3}3i=1 ∼ wi
3

z2
1

z2
2 z2

3

z2
4

log p̂1 log p̂2 log p̂3 log p̂4

propose zi4 ∼ q4(z4|x1:4, zi1:3)

z21

z22 z23

z24

∇ log p̂4log p̂4∇ logwi
3

gradients

Figure 3: Visualizing FIVO (from (Maddison et al., 2017)); (Left) Resample from particle
trajectories to determine inheritance in next step, (middle) propose with qt and accumulate
loss log p̂t, (right) gradients (in the reparameterized case) flow through the lattice, objective
gradients in solid red and resampling gradients in dotted blue.

3. RNNh, which parametrizes the variational posterior over z

So we need to find the gradient with respect to the parameters of each of these RNNs.
We can expand the gradient of the expectation as the sum of two terms:

∇L̃ = E
[
∇ log p̂(x) + log p̂(x)∇ log φ(z1:K , a1:K)

]
The first term is straightforward, since the computation of wi

t is essentially a ratio of prob-
abilities calculated from the RNNs. However, the second term is a little tricker, since the
ancestor variables are discrete, and so their score function gradient is high variance. How-
ever, Maddison et al. (2017) notes that dropping this term of the gradient seems to improve
training, since variance contributes more noise than signal. In conversation Chris Maddison
also confirmed that it wasn’t useful to compute those gradients. Our first attempt will avoid
computing those gradients to ease implementation, but we’ll experiment with those terms
later as well.

If all we need to do is use E[∇ log p̂(x)] as our gradient estimator, then there is very little
bookkeeping to do in PyTorch. We just need to make sure that the Variables corresponding
to the weights retain links to the past when sampled - this works with .clone(), or indexing,
which is probably the easiest method. See Fig. 3 for a visualization of the calculation of
gradients.

Evaluation

There are several common metrics by which we can evaluate the performance, and in order
of computational requirements, (and backwards in terms of reliability) they are: (1) use L̃,
(2) use the IWAE estimate, (3) generate from the prior and evaluate the log-likelihood of a
holdout set.

5 Discussion

Disadvantages

One primary disadvantage when compared to RNN-LMs or to the seq2seq model of Bowman
et al. (2015) is that the addition of another sequential model (i.e. a decoder) for predicting

7

time

pa
rti

cl
e

VSMC

time

pa
rti

cl
e

IWAE

0 20 40 60 80 100
time

350
300
250
200
150
100

50
0

E
LB

O VB
IWAE
logZT

VSMC

(a) (b) (c)

Figure 4: Comparing VSMC and the IWAE (from (Naesseth et al., 2017)) (a) VSMC resam-
ples the particles at each step, and chooses the most likely sequence, akin to beam search.
(b) IWAE does the same, but without resampling, and only chooses one of the k chains. This
means that only one sequence might be sampled in general. (c) As time increases, IWAE
and regular variational Bayes (VB) diverge from the true marginal likelihood, while VSMC
stays close.

the latent state distribution increases the number of parameters significantly. Our approach
for dealing with this concern is to reduce the size of the latent representation z. Since we’re
stretching the latent representation over the entire sequence, we can use smaller Gaussian
vectors for each particular state. In general using a discrete latent space is difficult for
inference, but recent advancements have made this problem less difficult. Still, since we can
only sample a very small subset of the possible sequences (and they are totally disjoint), we
might have trouble early in the training process.

Advantages

1. Sequential latent states add significant flexibility to the model: this is a
heuristic argument, but if we believe that there’s still some inherent randomness during
generation after seeing some portion of the sentence, then we should use sequential
latent states. An isotropic Gaussian generative process can’t capture dependencies
between latent variables, so this model is inherently more flexible.

2. A tighter approximation to the marginal is important for powerful decoder-
type models: few people in the community are comfortable with the idea of KL
annealing, though it’s clearly useful in practice and has some reasonable heuristic
arguments for it. However, Maddison et al. (2017) notes that the KL divergence in the
particle filter method does not collapse during training as observed in (Bowman et al.,
2015).

3. Particle filters are can help approximate multimodal distributions: Depend-
ing on our choice of resampling methods, particle filters are more efficient per-sample
for this kind of optimization, and they are more likely to find multiple modes than get
stuck at one.

8

References

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks. arXiv
preprint arXiv:1411.7610, 2014.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A recurrent latent variable model for sequential data. In Advances in
neural information processing systems, pages 2980–2988, 2015.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Re-
current batch normalization. arXiv preprint arXiv:1603.09025, 2016.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural
models with stochastic layers. In Advances in Neural Information Processing Systems,
pages 2199–2207, 2016.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623,
2015.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear
state space models. In AAAI, pages 2101–2109, 2017.

Tuan Anh Le, Maximilian Igl, Tom Jin, Tom Rainforth, and Frank Wood. Auto-encoding
sequential monte carlo. arXiv preprint arXiv:1705.10306, 2017.

Piji Li, Wai Lam, Lidong Bing, and Zihao Wang. Deep recurrent generative decoder for
abstractive text summarization. arXiv preprint arXiv:1708.00625, 2017.

Chris J Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi,
Andriy Mnih, Arnaud Doucet, and Yee Whye Teh. Filtering variational objectives. arXiv
preprint arXiv:1705.09279, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
lstm language models. arXiv preprint arXiv:1708.02182, 2017.

Christian A Naesseth, Scott W Linderman, Rajesh Ranganath, and David M Blei. Varia-
tional sequential monte carlo. arXiv preprint arXiv:1705.11140, 2017.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. In Advances in Neural Information Processing Systems,
pages 3738–3746, 2016.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the soft-
max bottleneck: A high-rank rnn language model. arXiv preprint arXiv:1711.03953, 2017.

9

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and Min Zhang. Variational neural
machine translation. arXiv preprint arXiv:1605.07869, 2016.

Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P Xing, and Alexander J Smola.
State space lstm models with particle mcmc inference. arXiv preprint arXiv:1711.11179,
2017.

10

	Prior work
	Model
	Inference
	Particle Filter
	Training

	Discussion

